Preliminary communication

The crystal and molecular structures of N, N^{\prime}-ethylenebis(acetylacetoneiminato)and N, N^{\prime} ethylenebis(benzoylacetoneiminato)nitrosylcobalt

R. WIEST and R. WEISS ${ }^{\star}$
Laboratoire de Cristallochimie ${ }^{\star \star}$, Institut de Chimie, 1, rue B. Pascal, Strasbourg - 67 (France) (Received March 18th, 1971)

The Schiff's base complexes of cobalt(II) N, N 'ethylenebis(acetylacetoneiminato)cobalt(II) (Co(EA)) and N, N^{\prime}-ethylenebis(benzoylacetoneiminato)cobalt(II) (Co(EB)) react with nitric oxide to give monomeric nitrosyl derivatives in which the chelate to nitric oxide molar ratio is $1 / 1^{1}$. The starting material is particularly interesting because its physicochemical properties and reactivity show strong analogies with the vitamin B_{12} group compourds. Stable organometallic derivatives of $\mathrm{Co}(\mathrm{EA})$ with a cobalt-carbon bond are known ${ }^{2}$ and a monomeric oxygen adduct $\mathrm{Co}\left(\mathrm{O}_{2}\right) \mathrm{L}(\mathrm{EA})$, in which the cobalt oxygen linkage is probably bent, has been described ${ }^{3}$.

In order to establish the geometry of the cobalt nitric oxide linkage in the nitrosyl derivatives of $\operatorname{Co}(E A)$ and $\operatorname{Co}(E B)$ we have determined their crystal structures. The existence of a bent $\mathrm{M}-\mathrm{N}-\mathrm{O}$ group has been suggested for $\mathrm{Co}(\mathrm{NO})\left(\mathrm{S}_{2} \mathrm{CNMe}\right)_{2}{ }^{4}$ and has been established in $\left[\operatorname{Ir}(\mathrm{CO}) \mathrm{Cl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+5}$ and $\left[\mathrm{CO}(\mathrm{en})_{2} \mathrm{Cl}(\mathrm{NO})\right]^{+6}$ (en $=$ etinylenediamine).

Crystal data: crystals of $\mathrm{Co}(\mathrm{NO})(\mathrm{EA})$ and $\mathrm{Co}(\mathrm{NO})$ (EB) were prepared by the method of Tamaki et aL ${ }^{1}$.
$\mathrm{Co}(\mathrm{NO})(\mathrm{EA})$ (orthorhombic), $a=17.308(10), b=12.725(7), c=6.316(4) \AA$, $V=1391 \AA^{3}, D_{\mathrm{ob}}=1.45, D_{\mathrm{c}}=1.48 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, Z=4$, Space group $P 2_{1} 2_{1} 2_{1} . \operatorname{Co}(\mathrm{NO})(\mathrm{EB})$ (orthorhombic), $a=22.188(10), b=11.935(5), c=7.708(2), V=2041 \AA^{3}, D_{o b}=1.39$, $D_{c}=1.40 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, Z=4$, Space group $P 2_{1} 2_{1} 2_{1}$.

X-ray data were collected on a Picker four circle automatic diffractometer using MoK α radiation. The structures were solved by standard methods. R values are now 0.056 for 1232 reflections measured with $\operatorname{Co}(\mathrm{NO})(\mathrm{EA})$ and 0.070 for 1130 reflections obtained with $\mathrm{Co}(\mathrm{NO})$ (EB).

The molecular structure of Co(NO)(EA) is shown in Fig. 1 with 30% probability ellipsoids drawn on the atomic sites. The Co(EA) group has the same geometry as in N, N^{\prime} ethylenebis(acetylacetoneiminato)methylcobalt(III) and apart from the presence of two phenyl rings instead of two methyl groups the geometry of the $\mathrm{Co}(\mathrm{EB})$ group in Co (NO)(EB) is not significantly different. The coordination arrangement around the cobalt atom is a

[^0]J. Organometal. Chem, 30 (1971) C33-C34
tetragonal pyramid with the nitrosyl group in the apical position. The oxygen and nitrogen atoms $\mathrm{O}(1), \mathrm{O}(2), \mathrm{N}(1)$ and $\mathrm{N}(2)$ are coplanar, the cobalt atom is displaced $0.19 \AA$ in $\operatorname{Co}(N O)(E A)$ and $0.23 \AA$ in $C o(N O)(E B)$ out of this plane towards the nitrosyl group.

Fig. 1. Molecular structure of Co (NO)(EA).
The Co-N-O linkage is distinctly bent in the two compounds; the angle is $122.4(0.5)^{\circ}$ in $\mathrm{Co}(\mathrm{NO})(E A)$ and $122.9(0.8)^{\circ}$ in $\mathrm{Co}(\mathrm{NO})(\mathrm{EB})$. The $\mathrm{Co}-\mathrm{N}(\mathrm{NO})$ distances, of $1.82(1)$ and $1.83(1) \AA$ respectively are significantly shorter than the average $\mathrm{Co}-\mathrm{N}(\mathrm{EA})$ and Co-N(EB) distances of 1.89(1) and 1.88(1). A similar angle and similar distances have been found in the $\mathrm{Co}-\mathrm{N}-\mathrm{O}$ group of $\left[\mathrm{Co}(\mathrm{Cl})(\mathrm{NO})(\mathrm{en})_{2}\right]^{+6}$.

Thus, the NO groups with an $s p^{2}$ hybridized nitrogen atom is probably bonded to a cobalt(III) atom with a concommittant π interaction occurring between Co and NO. Presumably, it is the same type of bond as that which occurs between the cobalt atom and the vinyl group in $\mathrm{Co}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{EA})^{7}$.

REFERENCES

1 M. Tamaki, I. Masuda and R. Shinra, Bull. Chem. Soc. Japan, 42 (1969) 2858.
2 G. Costa, G. Mestroni, G. Tauzher and L. Stefani, J. Organometal. Chem., 6 (1966) 181; G. Costa and G. Mestroni, J. Organometal Chem., 11 (1968) 325.

3 A.L. Crumbliss and F. Basolo, J. Amer. Chem. Soc, 92 (1970) 55; B.M. Hoffmann, D.K. Diemente and F. Basolo, J. Amer. Chem. Soc, 92 (1970) 61.
4 P.R.H. Alderman and P.G. Owston, Nature, 178 (1956) 1071; P.R.H. Alderman, P.G. Owston and J.M. Rowe, J. Chem. Soc., (1962) 668;

5 D.J. Hodgson and J.A. Ikers, Inorg. Chem, 7 (1968) 2345.
6 D.A. Snyders and D.L. Weaver, Chem. Commun, 2 (1969) 1425.
7 S. Brückner, M. Calligaris, G. Nardin and L. Randaccio, Inorg. Chim. Acta, 3 (1969) 308; S. Brückner, M. Calligaris, G. Nardin and L. Randaccio, Ibid., 2 (1968) 416.
J. Organometal. Chem, 30 (1971) C33-C34

[^0]: *Author to whom correspondence should be addressed.

 * Equipe de Recherche associée au C.N.R.S.

